Влияние процесса УФ отверждения на свойства стеклопластика. Перспективы применения УФ в производстве.

ООО «САМПОЛ» (Г. САМАРА)
НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ
ВК «КРОКУС-ЭКСПО»
МОСКВА 26.02.2013

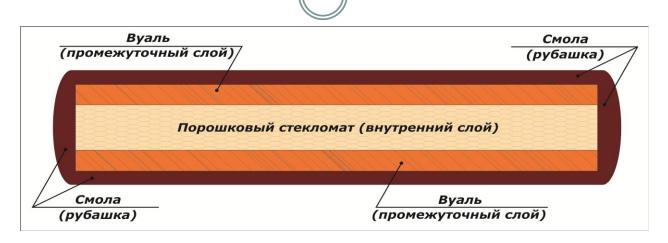
ЦЕЛИ ИССЛЕДОВАНИЙ

2012 год. Проведены исследования образцов стеклопластика на основе бисфенол—А эпоксивинилэфирной смолы, отвержденных тремя различными способами:

- отверждение при комнатной температуре и последующим постотверждением *(стандарт+)*;
- отверждение при комнатной температуре с применением УФ облучения и последующим постотверждением (УФ+);
- отверждение при комнатной температуре с применением только УФ облучения *(УФ)*.

Цели исследований:

- Определение области применения УФ метода.
- Разработка оборудования и сырья для производства УФ отверждаемых стеклопластиков на основе эпоксивинилэфиров.


ОСНОВНЫЕ ЗАДАЧИ

Задачи:

- Провести лабораторные испытания по определению химической стойкости образцов, изготовленных по различным режимам отверждения.
 Применить следующие агрессивные среды – 5% NaOH,
 75% H₂SO₄, дистиллированная вода – при повышенных температурах.
- Определить показатели физико-механических свойств образцов стеклопластиков, изготовленных по различным режимам отверждения.
- Провести анализ полученных результатов.
- Изучить влияние режимов УФ излучения на характеристики УФ отверждаемого стеклопластика при применении светодиодного оборудования (УФСО).

Конструкция образцов для испытаний в агрессивных средах

	NaOH	H ₂ SO ₄ , H ₂ O
Наружное покрытие (рубашка)	0,20–0,25 мм (толщина смоляного покрытия на основе смолы*)	0,20–0,25 мм (толщина смоляного покрытия на основе смолы*)
Промежуточные слои	вуаль синтетическая 2х20 г/м² (соотношение смола*/стекло — 90/10)	вуаль «С» 28 г/м² (соотношение смола*/стекло — 90/10)
Внутренний слой	порошковый стекломат 4х300 г/м² (соотношение смола*/стекло — 70/30)	порошковый стекломат 4x300 г/м² (соотношение смола*/стекло — 70/30)

Смола DION 9100 (производства REICHHOLD)

- Стандартная непредускоренная бисфенол—А эпоксивинилэфирная смола.
- Обеспечивает превосходную химическую стойкость в широком диапазоне кислотных и щелочных сред.

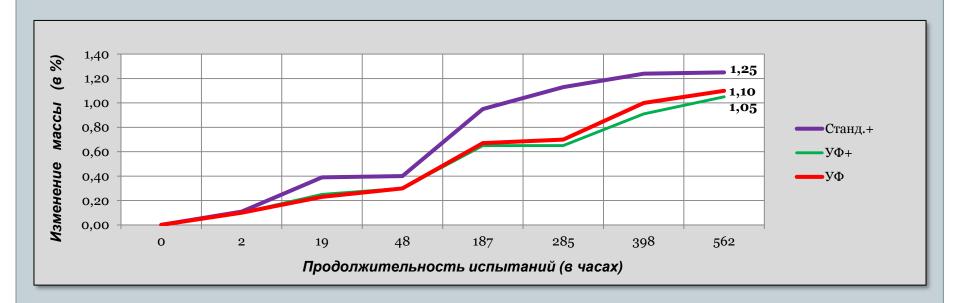
• Имеет хорошие механические свойства, низкое водопоглощение и высокую атмосферостойкость.

Типичные литьевые свойства:

Плотность	1,12	г/см ³
Разрушающее напряжение при растяжении	80	Мпа
Относительное удлинение при растяжении	5	%
Модуль упругости при растяжении	3400	Мпа
Разрушающее напряжение при изгибе	145	Мпа
Модуль упругости при изгибе	3200	Мпа
HDT	100	°C
Твердость Barkol 934–1	35	_

Внешний вид образцов после испытаний в 5% <u>NaOH</u> при 65°C

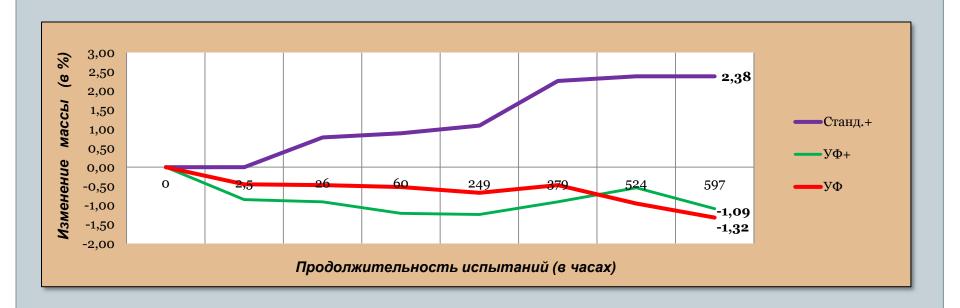
Стандарт+


УФ+

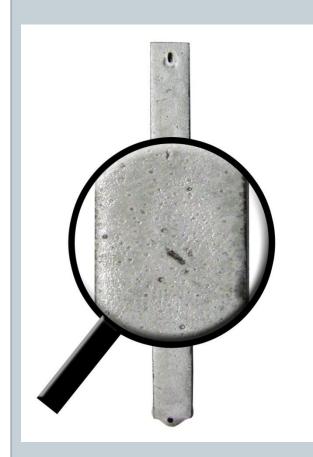
УФ


Изменение массы образцов (в %) стеклопластика в 5% <u>NaOH</u> при 65°C на основе смолы DION 9100

Система	Продолжительность испытаний (в часах)							
отверждения	0	2	19	48	187	285	398	562
станд.+	0,00	0,11	0,39	0,40	0,95	1,13	1,24	1,25
УФ+	0,00	0,10	0,25	0,30	0,65	0,65	0,91	1,05
УФ	0,00	0,10	0,23	0,30	0,67	0,70	1,00	1,10


Внешний вид образцов после испытаний в $75\%~H_2SO_4~$ при $50^\circ\mathrm{C}$

КСАМПОЛ


Изменение массы образцов (в %) стеклопластика в $75\% \, H_2 SO_4$ при $50^\circ C$ на основе смолы DION 9100

Система	Продолжительность испытаний (в часах)							
отверждения	0	2,5	26	60	249	379	524	597
станд.+	0,00	0,00	0,78	0,89	1,09	2,26	2,38	2,38
УФ+	0,00	-0,85	-0,91	-1,21	-1,24	-0,91	-0,54	-1,09
УФ	0,00	-0,45	-0,47	-0,52	-0,67	-0,47	-0,95	-1,32

Внешний вид образцов после испытаний в дистиллированной <u>воде</u> при 60°С

Стандарт+

УФ+

УФ

Изменение массы образцов (в %) стеклопластика в дистиллированной воде при 60°С на основе DION 9100

Система	Продолжительность испытаний (в часах)					
отверждения	0	12	139	254	547	
станд.+	0,00	0,21	0,82	1,02	1,26	
УФ+	0,00	0,42	0,65	0,66	0,66	
УФ	0,00	0,30	0,50	0,52	0,61	

Твердость образцов по Barkol 934-1 после испытаний в агрессивных средах

	Среда				
Система отверждения	5% NaOH	75% H ₂ SO ₄	H ₂ O		
стандарт.+	28–30	12-17	32–40		
УФ+	25–30	25–28	32–35		
УФ	32–35	28-32	36–40		

^{*} Исходная твердость образцов до испытаний – 35 – 40

ВЫВОДЫ ПО РЕЗУЛЬТАТАМ ИСПЫТАНИЙ ОБРАЗЦОВ В АГРЕССИВНЫХ СРЕДАХ

- В средах NaOH и воде происходит диффузия жидкой фазы.
- Образцы «УФ» и «УФ+» имеют конкурентные показатели в сравнении с образцом **«станд.+»** в щелочных средах и воде.

PS: при определении качества химической защиты основополагающим показателем является Масса образца и его твердость

- В серной кислоте имеет место вымывание остаточных низкомолекулярных продуктов у образцов «УФ+» и «УФ».
- В УФ отвержденных образцах постотверждение на химическую стойкость существенно не влияет.

Физико-механические свойства образцов стеклопластика на основе бисфенол-А эпоксивинилэфирной смолы DION 9100 (производитель Reichhold) с применением различных систем отверждения

No			Система отверждения			
№ п/п	Наименование показателей	Ед. изм.	Станд.+	УФ+	УФ	
1	Содержание связующего полимера	%	67,3	67,8	71,5	
2	Пористость	%	0,1	0,1	0,2	
3	Степень отверждения	%	97,1	99,6	98,5	
4	Плотность (р)	г/см ³	1,39	1,39	1,34	
5	Предел прочности при сжатии (б сжат)	Мпа	167,6	203,2	183,2	
6	Предел прочности на растяжение (б в)	Мпа	84,9	86,5	99,8	
7	Модуль упругости при растяжении (Ев)	Мпа	5920	6000	5620	
8	Предел прочности при изгибе (б изг)	Мпа	185,7	187,8	210,9	
9	Модуль упругости при изгибе (Е изг)	Мпа	6400	5900	6000	
10	Относительное удлинение (Є)	%	1,4	1,5	1,8	
11	Температура стеклования	°C	102	114	81	

Система отверждения:

Станд.+ – ускоритель NORPOL 9802 (Со 1%) – 3%, отвердитель NORPOL 11 (МЕК) – 2%, постотверждение – 4 часа при 80°С УФ+– отверждение при облучении ультрафиолетом (УФ−А) со скоростью 2 мин/мм толщины, постотверждение – 4 часа при 80°С

УФ – отверждение при облучении ультрафиолетом (УФ–А) со скоростью 2 мин/мм толщины

Оборудование УФСО

УЛЬТРАФИОЛЕТОВЫЙ СВЕТОДИОДНЫЙ ОБЛУЧАТЕЛЬ

Комплектация:

- √ базовый световой блок
- ✓ рабочий световой блок (по необходимости)
- ✓ блок питания
- ✓ пульт управления
- ✓ соединительные провода

Общие технические характеристики УФСО

Волновой спектр 390 – 410 нм

Угол расхождения светового потока 90°

Расстояние до облучаемой поверхности до 300 мм

Режим работы импульсный, постоянный

Потребляемая мощность до 250 Вт

Питание 220В / 50Гц

Габаритные размеры светодиодных блоков 500х200 мм

500х90 мм

Срок службы не менее 20 000 часов

Общие технические характеристики

Волновой спектр 390 – 410 нм

Угол расхождения 60° светового потока

Режим работы импульсный

Расстояние до

облучаемой до 450 мм

поверхности

Питание постоянное, 12В

Вес не более 5 кг

Комплектация:

- Светодиодный фонарь
- Аккумулятор
- Зарядное устройство от 220В / 50Гц
- Очки защитные
- Сумка
- Тренога (дополнительная комплектация)

Запускается в производство малый переносной комплекс УФСО.

Всю информацию по оборудованию можно узнать на WWW.SAMPOL.RU

Примеры изделий, производимых по технологии УФ отверждения в настоящее время

Кому интересен УФ метод?

- ПРОИЗВОДИТЕЛЯМ СЕРИЙНОЙ ПРОДУКЦИИ
- КТО ЧАСТО ПРОИЗВОДИТ ПРОДУКЦИЮ, НЕОБХОДИМУЮ «ВЧЕРА»
- ПРОИЗВОДИТЕЛЯМ ТРУБ МЕТОДОМ НЕПРЕРЫВНОЙ НАМОТКИ ДЛЯ НУЖД ЖКХ
- ПРОИЗВОДИТЕЛЯМ ХИМЗАЩИТЫ НА КРУПНЫХ СООРУЖЕНИЯХ
- ПРОИЗВОДИТЕЛЯМ ЕМКОСТНОГО ОБОРУДОВАНИЯ ДЛЯ АГРЕССИВНЫХ СРЕД
- ДЛЯ ПРОИЗВОДСТВА РЕМОНТНЫХ РАБОТ В «ПОЛЕВЫХ» УСЛОВИЯХ

В исследованиях и разработках принимали участие:

REICHHOLD

000 «САМПОЛ» (САМАРА)

ВИАМ (УЛЬЯНОВСКИЙ ФИЛИАЛ)

УФИРЭ (УЛЬЯНОВСКИЙ ФИЛИАЛ)

000 «ВНИЦУР-ТЕХПЛАСТ» (УЛЬЯНОВСК)

000 «ЦИК» (УЛЬЯНОВСК)

СГТУ (САМАРА)

СПАСИБО ЗА ВНИМАНИЕ!